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Abstract

We prescribe a software package and analytical method to capture, analyse and interpret pho-

toluminescence and transmission spectra of a sample in the visible range, and apply this method

to a variety of samples (crystalline and polymer semiconductors, and a variety of multi-quantum

wells) to observe changes in energy gaps and phonon energies as a function of temperature, then

discuss the principles behind the observations.

1 Introduction

Transmission and photoluminescence (PL) spectra
provide an understanding of the energetics of elec-
tron excitation and relaxation respectively, pro-
viding an insight into the structure and dynam-
ics found inside a material. This can be used to
then understand the underlying physical phenom-
ena that give rise to these dynamics.

This paper starts with an overview of the rele-
vant condensed matter phenomena that we will
be studying, and how they might depend on the
sample’s temperature. We then present data from
a variety of samples showing the temperature de-
pendence of PL spectra peaks and transmission
spectra edges, before discussing their physical rel-
evance in the context of the topics discussed in
section 2.

The appendix is a lab script that a physics under-
graduate could follow in order to showcase the phe-
nomena described in this paper. It demonstrates
how to use the software and tools we developed
to collect and analyse data. Our hope is that this
will be introduced into the undergraduate practi-
cal teaching course at Oxford University.

2 Overview Relevant Physical
Phenomena

2.1 Semiconductors

A key property of a semiconductor is that a small
yet finite gap exists between the highest-energy
occupied electron state and the lowest-energy un-
occupied electron state. This gap can have the
energy of a visible-range photon, so a visible-light
source can be used to excite outer electrons to
transition between these states, then a visible-light
spectrometer can be used to measure transmission
or PL from the material. It is the ease with which
electron transitions can be controlled which makes
semiconductors ideal for this experiment, since we
can be certain that we are only activating one tran-
sition. This would be in contrast to, for example,

X-ray spectrometry which would activate a variety
of transitions and could complicate data analysis.

Crystalline Semiconductors

In a crystalline semiconductor, the electrons oc-
cupy delocalised wavefunctions which are dis-
tributed throughout the material. These wave-
functions are similar to a free-electron wavefunc-
tion because (semi-classically) a nucleus on an
electron’s left will attract it almost as much as
the nucleus on its right. Putting a free-particle in
an infinite-potential well and applying the relevant
boundary condition is all that’s required to quan-
tise the possible wavefunctions - similarly, putting
a free-electron in a periodic potential applies a con-
dition on the available wavefunctions which leads
to quantisation. It is slightly different here since
the potential is weak instead of infinite (so the elec-
trons retain a free-electron-like wavefunction) and
the boundary condition is periodic instead of being
confined to a well (so the allowed k-states relate
to having the wavefunction match up to the lattice
structure). Similar k-states of different magnitude
form a continuous band of states, which can have
a finite difference in energy to other bands known
as the band gap energy. In a semiconductive crys-
tal this is a few eV and so the electrons in the
highest-energy band will be excited by visible-light
photons.

Temperature of the material will most affect its
band gap by thermal expansion of the lattice,
equating to thermal shrinking of the reciprocal lat-
tice and a decrease in all electron wave energies,
leading to smaller band gaps.

Polymer Semiconductors

Organic polymers are chain molecules comprising
a repeating set of “monomers” (which are organic
molecules). The electron wavefunctions of neigh-
bouring atoms merge into delocalised states, and
the symmetry of these states help define their en-
ergetics. If these states are rotationally symmetric
about the axis between the neighbouring atoms,
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then they have maximally “merged” and so are nor-
mally the strongest of delocalised bonds available
(called �-bonds) and as such form the backbone of
many polymers.

Consider a carbon atom in its ground state of
[He]2s22p2. To bond it with three other groups
one of the 2s electrons becomes excited to give
[He]2s12p3, whereupon the s, p

x

and p
y

states be-
come “hybridised” to give three sp2 states. Elec-
trons in these states can form �-bonds to the
neighbouring groups, and to maximise the dis-
tance between these bonds they all lie in the x� y
plane at 120o intervals. Since the �-bonds are such
strong bonds, they are now lower in energy than
the p

z

state (which explains why the hybridisa-
tion was able to happen). This p

z

state protrudes
from the x�y plane and is half-occupied, so if this
carbon is now in a chain of carbons in the same hy-
bridised state, the p

z

states will combine to form a
delocalised conjugated system which is half-filled,
meaning electrons can move between the atoms in-
side this conjugated system. Doing so requires the
electrons to tunnel between the neighbouring p

z

states, which is highly dependent on the distance
between the atoms. As such we can predict that
the peaks in absorption and PL will be at lower en-
ergies as the temperature is increased, since ther-
mal motion along the chain allows for neighbour-
ing atoms to spend more time closer together.

Instead of trying to pass a current through the ma-
terial, we are optically activating this “hop”. We
aren’t dealing with a continual stream of electrons
but the singular hopping to-and-from a neighbour-
ing atom. After hopping to the atom, the structure
of the polymer will change such that the energy
recovered by hopping back is less than that ab-
sorbed in hopping to the atom. We can therefore
expect to see a higher-energy peak in absorption
than photoluminescence.

2.2 Excitons

So far we have discussed the excitation and re-
laxation of electrons. A more encompassing ap-
proach is to also consider the empty state that the
electron leaves behind as a particle itself, called a
“hole”. This is useful when discussing conductivity,
since electrons travel in the highest-occupied state
and holes travel in the lowest-unoccupied state,
so net conductivity relies on both of these energy
levels and is most easily described with this con-
cept whereby the properties of either states are

translated into effective masses of the electrons
and holes.

Applying this to spectrometry, we see that absorp-
tion of a photon by a semiconductor creates an
electron-hole pair which eventually recombine to
emit a photon. Before recombination, the electron
and hole create a hydrogenic system (like positro-
nium, the system of an electron and a positron)
which has quantised energy levels. The size of
these energy levels determines the exciton type.

Wannier-Mott Excitons

Since crystalline semiconductors have high carrier
mobility, electric fields within the material are sup-
pressed (which is quantified by a high dielectric
constant). This subdues the electrostatic attrac-
tion between the electron and hole in an exciton,
giving a formation energy of the order of tens of
meV and an expected radius large enough to en-
compass many lattice points. This reduces the
effect of the lattice on the exciton energy levels,
allowing us to approximate them with the Bohr
model.

Frenkel Excitons

By contrast, carriers in polymer semiconductors
are far less mobile and so the electric field be-
tween the electron and hole in an exciton is far
less screened. This gives a larger exciton forma-
tion energy of 100meV � 1eV .

2.3 Indirect Transitions

Some electronic transitions have momentum and
energy requirements that can’t be met by a single
photon. In such a case, the absorption of the pho-
ton must happen together with the absorption of a
phonon, or stimulation of an exciton. Similarly on
relaxation, the electron might emit both a phonon
and a photon.

In the case of a phonon-assisted transition, we can
predict that reducing temperature will not affect
the spectra until we pass the material’s Debye tem-
perature, after which the transition will require
more energy to be put into the photon.

2.4 Multi-Quantum Wells (MQW)

In a MQW, a semiconductor is sandwiched be-
tween two other semiconductors which have a
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larger energy gap. The carrier wavefunctions in
the central layer are now confined to the two di-
mensional plane of the layer.

Figure 2.1: Band structure across the
semiconductor sandwich

As the figure above shows, a well is created for each
carrier type. Upon photo-excitation, an electron-
hole pair is created within their respective wells.
They will recombine to emit a photon with an
energy of E

gap

plus the energies of the occupied
states in each well.

Infinite Potential Well Model

A simplistic model is to assume each well’s walls
are infinite in potential, whilst each carrier takes
on an effective mass not necessarily the same as
the effective mass within the semiconductors. In
doing so we find that

E
well

(n) =
~2
2m⇤

⇣n⇡
L

⌘2
(2.1)

where n is the quantum number.

So the emitted photon will have energy

E
p

= E
gap

+

✓
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L
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h
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h
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n2
e

2m⇤
e

◆

In the creation of a particle-antiparticle pair, mo-
menta is shared equally between the two. This
tells us that the momenta of the electron and hole
states must be equal, which can only be true if
n
h

= n
e

. Therefore,

E
p
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gap

+

✓
~n⇡
L

◆2✓
1

2m⇤
h

+

1

2m⇤
e

◆

= E
gap

+

1

2µ⇤

✓
~n⇡
L

◆2

where µ⇤ is the reduced effective mass of the
electron-hole pair, given by

1

µ⇤ =

1

m⇤
h

+

1

m⇤
e

Finite Potential Well Model

The fact that the well is not infinitely deep allows
for the carrier’s wavefunction to extend beyond the
spacial confines of the well. Outside the well (ie.
in the AlGaAs) the carriers’ masses and energies
are different, so the derivation is more involved.

Figure 2.2: A schematic of the finite potential
well model

The Hamiltonian is therefore

H =

(
p

2

2mw
for |x| < L

2
p

2

2m0
+ V0 for |x| > L

2

We now apply these to the time-independent
Schrödinger equation, H = E . Firstly inside
the well:

� ~2
2m

w

d2

dx2
 = E 

)  00
= �k2

w

 

Where k
w

=

1

~
p

2m
w

E (2.2)

=)  = Aeikwx

+Be�ikwx

The symmetry of the well in the x axis requires  
to be either symmetric or antisymmetric, so either
A = B or A = �B, giving
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 = a sin k
w

x+ b cos k
w

x

where a and b are real.

Outside of the well,

� ~2
2m0

d2

dx2
 = (E � V0) 

)  00
= k20 

Where k0 =

1

~
p
2m0 (V0 � E) (2.3)

=)  = C1e
k0x

+ C2e
�k0x

We have chosen E < V0, so the wavefunction must
attenuate at large x. Therefore

 (x) =

8
><

>:

C1e
k0x for x < �L

2

a sin k
w

x+ b cos k
w

x for |x| < L

2

C2e
�k0x for x > L

2

We may consider the symmetric (cosine) and an-
tisymmetric (cosine) solutions independently due
their orthogonality. In the symmetric case, we re-
quire C1 = C2 and in the antisymmetric case we
require C1 = �C2, hence

 
sym

(x) =

8
><

>:

cek0x for x < �L

2

b cos k
w

x for |x| < L

2

ce�k0x for x > L

2
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(x) =

8
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2

a sin k
w
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2
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2

At the boundaries between these regions, the
wavefunctions and their derivatives must be con-
tinuous. For the symmetric solution at x = L/2,

 
sym

(L/2 + �) =  
sym

(L/2� �)

) ce�k0L/2
= b cos
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w

L

2
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 0
sym
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2
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Similarly for the antisymmetric solution,
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) �dk0e
�kL/2

= ak
w
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L
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Dividing equations 2.6 by 2.4 and 2.9 by 2.7 gives

k0
k
w

=

(
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kwL
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sym
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kwL

2 for  
anti

Using equations 2.2 and 2.3 we can express k0 and
k
w

in terms of the carrier energy, E, giving

s
m0

m
w

✓
V0

E
� 1

◆
=

(
tan

L

p
2mwE

2~ for  
sym

� cot

L

p
2mwE

2~ for  
anti

(2.10)

3 Method

We designed two sample holders to allow for trans-
mission and photoluminescence spectra, as shown
in figures 3.1 and 3.2 respectively.

Figure 3.1: Experimental set up for taking
transmission spectra
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Figure 3.2: Experimental set up for taking PL
spectra

We used an Ocean Optics (USB4000) spectrom-
eter, two Lakeshore DT-470 temperature sensing
diodes, a Lakeshore DAQ (digital acquisition) de-
vice, an Ocean Optics HL-2000-FHSA halogen
lamp, and a three-way optical fibre.

We developed software to interface with the DAQ
and spectrometer to allow for automated data col-
lection as the sample was cooled, by submersion
in liquid nitrogen and then liquid helium (for PL
spectra only, since the previous investigator of this
project reports that transmission spectra of the
samples used do not change between liquid nitro-
gen and liquid helium temperatures).

Of interest in the PL spectra are the peak energies,
so we were able to change the integration time as
the sample was cooled to whatever value gave the
best peak definition (ie. the largest peaks possible
without saturating the spectrometer). For expedi-
ency we exported spectra to Origin Lab 8.1 to use
its peak fitting tool, and then developed scripts to
present the peak energies against sample temper-
ature.

For transmission spectra we instead are interested
in the absorption coefficients across wavelengths,
�, of A

�

as defined in [4] by

A
�

= � log10

✓
S
�

�D
�

R
�

�D
�

◆

where S
�

is the spectrum with the sample in the
holder, D

�

is the spectrum with the halogen lamp
turned off, and R

�

is the spectrum with the lamp
on but the sample removed from the holder. This
coefficient allowed us to deduce the energy gaps in
crystalline semiconductors using [4]

E � E
g

/
(
A2 for direct transitionsp
A for indirect transitions

The software we developed allowed for these spec-
tra to be algebraically manipulated to show the
A

�

spectrum in real-time.

A problem presented itself when taking data be-
cause, as the sample was cooled and the spectral
peaks grew in size, we needed to decrease the in-
tegration time to avoid saturating the spectrom-
eter, but the R

�

spectrum would only have been
taken at the starting integration time. The soft-
ware was therefore improved to allow for the in-
tegration time of the sample being recorded to be
a variable in the equation of A

�

, allowing the R
�

and D
�

spectra to be scaled according to the inte-
gration time.

4 Observations

4.1 Polymer Semiconductor - PFO

Figure 4.1: PFO PL spectrum (6K)

Figure 4.2: PFO PL spectral peaks’ energies
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4.2 Multi-Quantum Wells

Figure 4.3: PL spectra for four MQW samples
(6K)

Figure 4.4: PL spectral peaks’ energies for
sample A2573

4.3 Crystal Semiconductor - GaAs

Figure 4.5: Absorption spectrum of GaAs

5 Analysis

5.1 Polymer Semiconductor - PFO

As temperature decreases, we see that the largest
peak decreases in energy, meaning the energy re-
leased as an electron to hop within the ⇡ conju-
gate system decreases. This could be explained by
the polymer contracting as it cools, shortening the
distance between neighbouring p

z

orbitals (ie. the
distance between the electron and its hole), thus
reducing the exciton’s energy which is released on
recombination.

Subsequent peaks come from phonon-assisted
transitioning. They are of a similar amplitude,
confirming that phonons are plentiful in the molec-
ular bonds. The difference between the first and
subsequent peaks gives the energies of the phonons
involved.
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Figure 5.1: Difference in energy between the first
and subsequent PL peaks of PFO

These energies are almost constant with respect to
temperature (within error boundaries). The aver-
ages of these energies are shown below.

Figure 5.2: Plot an linear fit of relative peak
number and energy shift from first peak

As shown, the average energy between peaks and
the first peak increases almost linearly. The line
has an intercept of 0.048±0.009 eV, and a slope of
0.147 ± 0.003 eV/peak. This suggests an average
phonon energy of 0.147±0.003 eV, with these sub-
sequent peaks arising from multiple phonons being
produced from each electron-hole recombination.

With this in mind we need only consider the tem-
perature dependence of the first peak, which we do
first by comparison with the Varshni [1] empirical
equation,

E(T ) = E(0)� ↵T 2

T + �

We find ↵ = (�1.30± 0.15) ⇥ 10

�4eV/K, � =

37.7± 37.1K, and E(0) = 2.794± 0.001 eV.

5.2 MQW - Sample 2573

This sample contains four types of well with widths
1.2nm, 2.5nm, 5nm, and 10nm. We expect there-
fore to find a peak for each type of well, and two
peaks for the band gaps in the GaAs and AlGaAs.
Equation 2.1 tells us that larger well widths refer
to lower-energy peaks, so we can assign the peaks
to their widths (with the AlGaAs peak represent-
ing a zero-width well) and make a plot.

Figure 5.3: Plot of well width against n = 1

energy

We have fitted the infinite and finite models from
equations 2.1 and 2.10 respectively, taking n = 1

in all cases. Clearly only the finite potential well
model is more appropriate than the infinite poten-
tial well model.
An attempt was made to fit the more realistic
model of a pair of finite wells as described in fig-
ure 2.1, but this required four parameters (ie. the
masses of each charge carrier both inside and out-
side the well) to be determined from a dataset of
only five points, which led to an unsatisfactory fit.
Instead, the electron mass represents something
similar to a reduced mass between the electrons
and holes. The fit gave the mass outside the well
as m0/me

= (3.97 ± 0.59) ⇥ 10

�3 and inside the
well as m0/me

= (1.81± 0.10)⇥ 10

�2 where m
e

is
a free electron’s rest mass.
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All the peaks had the same temperature depen-
dence, originating from the change in lattice (and
therefore well) size as temperature changes. Fit-
ting the second peak (relating to the 10nm well)
to the Varshni empirical formula gives ↵ = (1.19±
0.56)⇥10

�4JK�2, � = (900±580)K, and E(0) =

(1.5576± 0.0025)eV .

Figure 5.4: Temperature dependence of a QW’s
n = 1 energy level.

5.3 Crystal semiconductor

GaAs

Since we know that a direct semiconductor will
have a quadratic relation between absorption and
photon energy, we plot A2 against photon energy
and perform a linear fit to the sharp rise in the
1.3 ! 1.42 eV region. From previous data [2] we
know that the photon energy with A = 3.06 is
10± 3meV below the band gap, so we interpolate
using the linear fit then add 10 ± 3meV, giving
figure

Figure 5.5: Temperature dependence of the band
gap energy in GaAs.

Where the line is the fitted Varshni equation,
with parameters of ↵ = (1.47± 0.9)⇥ 10

�3 eV/K,
� = 1273± 959K, and E(0) = 1.43249± 0.013eV.

The band gap energies calculated are approxi-
mately 0.09eV lower than the value reported in
the literature, where E(294) = 1.435 ± 0.003 eV
[2] and E(77) = 1.512 ± 0.001eV [3]. Absorption
data collected on GaAs last year using this same
methodology attains better values, and there are
discrepancies between that data and the data col-
lected here. It is possible that the sample we used
had impurities, and had time allowed we would
have repeated our analysis on other GaAs sam-
ples.

6 Conclusion

We have demonstrated a range of physical phe-
nomena with only an inexpensive laser, lamp and
spectrometer, and developed a lab script and soft-
ware to aid future students in using the set up to
further their understanding of these phenomena.

We found that the MQW spectra were most use-
ful at low temperatures, where thermal broaden-
ing was reduced. However the spectra at liquid
helium temperatures were very similar to those at
16K, which is achievable using a cold finger with
far fewer practical difficulties. As such we’d recom-
mend integrating the sample holder used for pho-
toluminescence into a cold finger in future.

We were able to fit the MQW peaks to a simpli-
fied version of the finite potential well model, but
in doing so were only able to prove the model was
valid without using the model to estimate charge
carrier masses. To fit the more complete model we
would need more data points, which could be ac-
complished by producing MQWs of different sizes
- a possible avenue of future research.
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Appendix - Introduction

This script aims to demonstrate how visible-light spectroscopy can be used to investigate semiconduc-
tors. We will use transmission spectra to determine the energy gaps in a crystalline semiconductor,
then photoluminescence (PL) spectra to understand how phonons affect electron transitions in a range
of semiconductors. Lastly we use PL spectra to study the energy levels in quantum wells using both the
infinite and finite potential well models. Throughout the experiment we’ll monitor the temperature-
dependence of the aforementioned phenomena.

[Answers to questions posed in the script are written like this, and should not be given to students]

1 Semiconductor Theory

A key property of a semiconductor is that a small
yet finite gap exists between the highest-energy
occupied electron state and the lowest-energy un-
occupied electron state. This gap can have the
energy of a visible-range photon, so a visible-light
source can be used to excite outer electrons to
transition between these states, then a visible-light
spectrometer can be used to measure transmission
or PL from the material. It is the ease with which
electron transitions can be controlled which makes
semiconductors ideal for this experiment, since we
can be certain that we are only activating one tran-
sition. This would be in contrast to, for example,
X-ray spectrometry which would activate a variety
of transitions and could complicate data analysis.

1.1 Crystalline Semiconductors

In a crystalline semiconductor, the electrons oc-
cupy delocalised wavefunctions which are dis-
tributed throughout the material. These wave-
functions are similar to a free-electron wavefunc-
tion because (semi-classically) a nucleus on an
electron’s left will attract it almost as much as
the nucleus on its right. Putting a free-particle in
an infinite-potential well and applying the relevant
boundary condition is all that’s required to quan-
tise the possible wavefunctions - similarly, putting
a free-electron in a periodic potential applies a con-
dition on the available wavefunctions which leads
to quantisation. It is slightly different here since
the potential is weak instead of infinite (so the elec-
trons retain a free-electron-like wavefunction) and
the boundary condition is periodic instead of being
confined to a well (so the allowed k-states relate
to having the wavefunction match up to the lattice
structure). Similar k-states of different magnitude
form a continuous band of states, which can have
a finite difference in energy to other bands known
as the band gap energy. In a semiconductive crys-
tal this is a few eV and so the electrons in the

highest-energy band will be excited by visible-light
photons.

1.2 Polymer Semiconductors

Organic polymers are chain molecules comprising
a repeating set of “monomers” (which are organic
molecules). The electron wavefunctions of neigh-
bouring atoms merge into delocalised states, and
the symmetry of these states help define their en-
ergetics. If these states are rotationally symmetric
about the axis between the neighbouring atoms,
then they have maximally “merged” and so are nor-
mally the strongest of delocalised bonds available
(called �-bonds) and as such form the backbone of
many polymers.

Consider a carbon atom in its ground state of
[He]2s22p2. To bond it with three other groups
one of the 2s electrons becomes excited to give
[He]2s12p3, whereupon the s, p

x

and p
y

states be-
come “hybridised” to give three sp2 states. Elec-
trons in these states can form �-bonds to the
neighbouring groups, and to maximise the dis-
tance between these bonds they all lie in the x� y
plane at 120o intervals. Since the �-bonds are such
strong bonds, they are now lower in energy than
the p

z

state (which explains why the hybridisa-
tion was able to happen). This p

z

state protrudes
from the x�y plane and is half-occupied, so if this
carbon is now in a chain of carbons in the same hy-
bridised state, the p

z

states will combine to form a
delocalised conjugated system which is half-filled,
meaning electrons can move between the atoms in-
side this conjugated system. Doing so requires the
electrons to tunnel between the neighbouring p

z

states, which is highly dependent on the distance
between the atoms. As such we can predict that
the peaks in absorption and PL will be at lower en-
ergies as the temperature is increased, since ther-
mal motion along the chain allows for neighbour-
ing atoms to spend more time closer together.

Instead of trying to pass a current through the ma-
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terial, we are optically activating this “hop”. We
aren’t dealing with a continual stream of electrons
but the singular hopping to-and-from a neighbour-
ing atom. After hopping to the atom, the structure
of the polymer will change such that the energy
recovered by hopping back is less than that ab-
sorbed in hopping to the atom. We can therefore
expect to see a higher-energy peak in absorption
than photoluminescence.

1.3 Phonons

A phonon is a quasiparticle which embodies the
emergent properties of a wave of vibration in a
system. They are the quantum equivalent to the
wave solutions of the normal modes in a system
of masses interconnected by springs. As in this
classical scenario, there are phonons where neigh-
bouring atoms either move in opposing directions
(called “optical” phonons) or similar directions
(called “acoustic” phonons). Acoustic phonons
carry sound waves, and at large wavevectors the
energy and wavevectors of the phonons are linearly
related.

Optical phonons have non-zero energy at zero
wavevector (ie. when atoms in a chain connected
by springs move exactly oppositely to its neigh-
bours, there is no net transfer of energy yet there
is energy stored in the vibrational mode). This
is similar to photon, which has a comparatively
minute wavevector and a finite energy. This means
photons can be absorbed by the structure in cre-
ating an optical phonon, hence their name.

1.4 Direct and Indirect Transitions

Some electronic transitions have momentum and
energy requirements that can’t be met by a sin-
gle photon. In such a case, the absorption of the
photon must happen together with something else
such as the absorption of a phonon. Similarly on
relaxation, the electron might emit both a phonon
and a photon. Either case is called an indirect
transition. Depending on the material’s structure,
there may be multiple combination of available
phonons which allow photons of various energies
to cause a transition. As such an indirect semi-
conductor will normally show more spectral peaks
than a direct semiconductor.

2 Transmission Spectra

In relating transmission spectra to energy gaps,
we are interested in the absorption spectrum A as
defined by

A = � log10

✓
S �D

R�D

◆

where S is the spectrum with the sample in the
holder, D is the spectrum with the halogen lamp
turned off, and R is the spectrum with the lamp
on but the sample removed from the holder. This
spectrum allows us to deduce the energy gap E

g

in a crystalline semiconductor using

E � E
g

/
(
A2 for direct transitionsp
A for indirect transitions

(2.1)

where E is the energy of the incident photon. As-
suming the band gap is sufficiently described by
the absorption spectrum, one can find E

g

by plot-
ting E against either A2 or

p
A, then by extrapo-

lating the steepest rise linearly down to the inter-
section with A = 0. The energy at this intersection
will be E

g

.

2.1 Initial Set Up

Ensure the equipment is set up as in figure 3.1.

Figure 3.1: Experimental set up for taking
transmission spectra

Light is focussed from the halogen lamp into the
optical fibre, columnated by the first lens, is passed
through the sample, focussed into the second opti-
cal fibre, then detected by the spectrometer. The
sleeves into which the fibres screw in the sample
holder can move toward or away from the lenses by
loosening the relevant grub screw. By screwing the
optical fibre from the lamp into each sleeve in turn,
adjust the sleeve’s height until the light bouncing
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off the attached mirror is columnated. Hint - be
sure the grub screws are properly tightened.

’TrAPS’ is a piece of software developed specif-
ically for this experiment. Run it and click
the ’Change curve’ button then find ’transmis-
sion_temp_calib.dat’. This contains the calibra-
tion data required to convert the voltage across the
temperature-sensing diode mounted on the sample
mount as measured by the DAQ into a tempera-
ture (shown at the bottom-left of the computer
screen).

2.2 Room Temperature Absorption
Spectrum

For this section we are concerned with the absorp-
tion scale defined in equation 2.1, for which we
need a background and a reference spectrum. Re-
name the current dataset name as “background”,
then with no sample in the holder and the halogen
lamp turned off click “Aquire”. Now to the right of
the dataset name box click the ‘+’ button to add a
new dataset, and rename this as ‘reference’. Turn
the lamp on and open the aperture as far as possi-
ble without the spectrometer becoming saturated.
Hint - tap the lamp to make sure the aperture won’t
wriggle open, since we need it to stay at its current
size. Click ’Aquire’.

To show the absorption scale on the graph, click
the ’Add View’ button beneath the graph and type
‘-log((live-background)/(reference-background))’
into the equation column and ’absorption’ as the
name for the new view. Create another view called
’scaled_abs’ with the equation ’absorption*1e5’;
the factor of 105is to allow for both the absorption
and transmission spectra to be seen simultane-
ously. This will become important later.

Put the GaP sample into the holder. Why does
the absorption spectrum become fuzzy at the ex-
tremes of photon energy? Hint - look at the refer-
ence spectrum and equation 2.1.

[The halogen light doesn’t emit much light in those
ranges, so ’reference-background’ is small, so any
small perturbation in the live spectrum becomes
larger]

2.3 Integration Time

The sample has caused the entire spectrum to at-
tenuate. To compensate for this the integration
time of the spectrometer can be increased using

the box in the top-left of the screen, thus increas-
ing the number of photons detected in all wave-
lengths. Soon we will need to compare spectra
captured with different integration times, which
becomes difficult if the spectral amplitudes are ar-
bitrary with respect to each other. To simplify
this, the software automatically scales the col-
lected spectra to have amplitudes as if it were cap-
tured using the lowest integration time, 3.8ms. In
practice, this means that increasing the integration
time will not increase the spectral amplitudes but
instead decrease the saturation amplitude, shown
on the graph as a grey horizontal line starting at
around 65000 counts. To maximise accuracy one
must maximise the integration time whilst keep-
ing the live view’s spectrum below the saturation
amplitude.

2.4 Room Temperature Energy Gap

Create a view with the equation ’sqrt(absorption)’
then right-click on it and select ’export’, choosing
somewhere appropriate to place the file, then open
Origin Lab and import it. Plot the data as a line
graph and recall that we are only conscerned with
the steepest linear section of the spectrum. To
this end open the ’Gadgets’ menu and select ’Clus-
ter’, which allows you to manipulate data inside a
graph. Resize the rectangle until only the linear
section is contained, then mask everything outside
the rectangle, which will turn red if successful. Ex-
trapolate this linear section to find the energy atp
A = 0, which is the energy gap in GaP. Check

your value with a demonstrator, then ask for some
liquid nitrogen.

2.5 Temperature-Dependent Energy
Gap

On the left of the TrAPS window check the ’Trig-
ger by temperature’ box. Set the maximum tem-
perature to 300K, the minimum to 75K, and
choose to take 40 spectra. Create a new dataset
called ’GaP’ and click ’aquire’, then edit the ’ab-
sorption view’ equation by replacing ’live’ with
’GaP’. Hide all but the square-rooted-absorption
and live views by unchecking them. You should see
on the graph the live transmission spectrum (to
maximise accuracy as per section 3.1.3) and every
time the temperature drops past a grey marker a
spectrum will be taken and converted to an square-
rooted-absorption spectrum on the graph. Put the
sample holder in the nitrogen container so it only
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just touches the liquid. Why should this matter?
Wait until the temperature settles around 77K. If
you find the amplitudes change wildly try pushing
cryogenic putty into the joints between the mirrors
and the holder and try again.

[Nitrogen bubbles cause the spectra to change am-
plitude very quickly; the slower the holder cools
down, the more similar the diode and the sample’s
temperatures are]

If TrAPS is still in aquiring mode, click ’Stop
Aquiring’. Remove the sampel holder from the
container to warm up, and watch the live spec-
trum. Why are we not taking spectra as the sam-
ple warms up?

[Reflection from condensation is evident on spec-
trum; it takes far more time]

Export the square-rooted-absorption view to Ori-
gin and follow section 3.1.4, but this time perform-
ing a batch-extrapolation to

p
A = 0. This can be

done by creating a fitting-function where one of
the parameters is the energy gap, then by follow-
ing the Origin Lab tutorial on batch processing.
By making the ’Dataset identifier’ the ’Comments’
field in the batch processing dialogue, each spec-
trum’s temperature will be used to identify it in
the final worksheet.

In Origin, create a new worksheet with two
columns (set as X and Y) and fill both with
row-numbers. Highlight both rows and press
’control+y’, then create a new function, y =

(x� E) /m, and fit the data to it. In the ’FitNL1’
worksheet copy both the value and error for E.
Create a new worksheet called ’Output’ with two
columns (’Energy Gap’ set as ’Y’ and ’Error’ set as
’yErr’) then ’paste link’ into column 1, row 1. You
can now save this as an analysis template, which
can be used in the batch processing dialogue.]

Plot temperature against energy gap then fit
against Varshni’s empirical equation,

E(T ) = E(0)� ↵T 2

T + �

where ↵, � and E(0) are constants to be found.
What are their dimensions? Make a guess as to
the physical significances of � and E(0).

[↵ has units J/K2; � has units K and relates
to the Debye temperature (below which there isn’t
enough thermal energy to activate all available
phonon modes); E(0) is the theoretical band gap
energy at absolute zero].

3 Photoluminescence Spectra

Using a 400nm laser we can excite electrons over
the band gap and observe the transitions they re-
turn by. Each transition involves emitting one
photon which we measure, and then by compar-
ison to the band gap energy we can determine the
energy spent elsewhere (for example in creating
a phonon). As such we are only concerned with
the energies of the spectral peaks relating to these
photons.

3.1 Initial Set Up

Ensure the equipment is set up as in figure 4.1.

Figure 4.1: Experimental set up for taking PL
spectra

The laser light is focussed into the optical fibre
and is then absorbed by the sample, which is posi-
tioned at an angle so reflected light does not return
along the fibre. The sample will photoluminesce at
all angles equally (ie. regardless of the angle of the
incident light) meaning the photoluminescent light
will return via the outer sections of the optical fi-
bre to the spectrometer.
Secure the sample in the mount using cryogenic
putty, then close the mount. To maximise the re-
turned light have TrAPS show the live spectrum
whilst moving the three-way fibre relative to the
sample and changing the distance from the lens to
the optical fibre.

3.2 Data Collection

Talk to a demonstrator before cooling the sam-
ple. As before, create a new dataset and configure
TrAPS to collect spectra across a range of tem-
peratures, this time down to 4K. Decreasing the
sample’s temperature slowly will, again, increase
accuracy of the recorded temperatures. Export
the data to Origin.
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3.3 Peak Detection

Given the amount of noise in the spectra, setting
up automated peak detection means finding the
settings which will detect all the true peaks and a
minimum of false peaks. Use Origin’s ’Peak Anal-
ysis’ tool and pay attention specifically to the peak
finding and filtering settings. The FFT Filter with
a cut-off frequency of 0.01 is a good starting point.
After testing the settings with a selection of spec-
tra to ensure it will work for all temperatures, save
the dialogue theme from inside the peak analyser.
Then use the ’Batch Peak Analyser’ with the dia-
logue theme to find all peaks throughout the range
of spectra, making the dataset identifier the ’Com-
ments’ again.

Make a scatter plot of temperature against peak
energy and open the cluster gadget. In its prefer-
ences/calculation pane check ’Indices’ and uncheck
everything below. Select groups of peaks (ie. the
same peak which slowly changes with tempera-
ture) in turn, each time clicking ’Output Statis-
tics Report’. This puts each group of peaks into a
column by reference to the row index in the origi-
nal peak energies worksheet. Now use the custom-
written ’Make peaks summary’ script in the anal-
ysis menu to create a worksheet containing peak
energies and errors, and another containing the
difference between these energies (with errors).

3.4 Peak Analysis

What relation is there between the differences be-
tween peak energies? [They are all very similar].
Why are there so many peaks? [Tunnelling be-
tween adjacent p

z

states along a polymer chain
is highly dependent on the distance between the
monomers, which is highly dependent on phonons].
Fit the highest-energy peak to the Varshni empir-
ical formula.

4 Quantum Wells

4.1 Theory

In a MQW, a semiconductor is sandwiched be-
tween two other semiconductors which have a
larger energy gap. The carrier wavefunctions in
the central layer are now confined to the two di-
mensional plane of the layer.

Figure 5.1: Band structure across the
semiconductor sandwich

As the figure above shows, a well is created for each
carrier type. Upon photo-excitation, an electron-
hole pair is created within their respective wells.
They will recombine to emit a photon with an
energy of E

gap

plus the energies of the occupied
states in each well.

Infinite Potential Well model

A simplistic model is to assume each well’s walls
are infinite in potential, whilst each carrier takes
on an effective mass not necessarily the same as
the effective mass within the semiconductors. In
doing so we find that

E
well

(n) =
~2
2m⇤

⇣n⇡
L

⌘2
(4.1)

where n is the quantum number.

So the emitted photon will have energy

E
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gap
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In the creation of a particle-antiparticle pair, mo-
menta is shared equally between the two. This
tells us that the momenta of the electron and hole
states must be equal, which can only be true if
n
h

= n
e

. Does this mean that a photon can never
be absorped and result in n

h

6= n
e

? [In our model,
this isn’t possible. However the real world is more
complex than this model, and such a transition can
take place - but probably much less often than one
where n

h

= n
e

].

Therefore,
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where µ⇤ is the reduced effective mass of the
electron-hole pair, given by

1

µ⇤ =

1
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h

+

1
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Finite Potential Well model

The fact that the well is not infinitely deep allows
for the carrier’s wavefunction to extend beyond the
spacial confines of the well. Outside the well (ie.
in the AlGaAs) the carriers’ masses and energies
are different, so the derivation is more involved.

Solutions for the energy allowed levels can only be
found numerically from equation 4.2
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(4.2)

4.2 Data Collection

Put sample A2576 into the PL sample holder, then
perform the same steps as in section 4.1, 4.2 and
4.3.

4.3 Peak Analysis

The A2573 sample contains four types of quantum
well, each with its own width (from 10nm, 5nm,
2.5nm, and 1.2nm). Which other peaks should be
present? [AlGaAs at 2eV and GaAs at 1.49eV]
If the well widths were somehow shrunk to zero,
which of these six peaks would remain? [AlGaAs]

Try to match the well widths to the PL peak ener-
gies (hint: look at the relationship between E and
L in equation 4.1). Plot peak energy against well
width, then using Origin’s non-linear function fit-
ter create a fitting function for both the infinite
and finite potential well models. (Hint: find L as
a function of E in both equations 4.1 and 4.2).
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