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Abstract

After reviewing existing applications and implementations of hand gesture recognition, we propose

creating a software package able to learn and act upon user-configured hand gestures from a standard

webcam for simple interactions when using a mouse, keyboard, or touchpad is not practical. We then lay

out clear goals for what we hope to achieve, with an emphasis on creating a working prototype as quickly

as possible, where improvements are easily made and tested through the implementation of a robust and

hot-swappable framework that could be useful for academics looking to compare component algorithms of

gesture recognition.

1 Background

1.1 Human Computer Interaction
(HCI)

HCI is a rich and broad field due to the innumerable
tasks a computer can perform and the variety of infor-
mation required by and from the user for each. Con-
cepts such as direct manipulation of graphical objects
and gesture recognition have been heavily researched
since the 1960s [1], and have led to the development
and general adoption of mice, touchpads, and touch-
screens.

There are numerous use cases where such devices
are unnatural or inconvenient, such as interacting with
a 3D virtual environment or interpreting sign language
[2]. Interpreting hand gestures can provide a more
natural interface [2], and a data-rich input given that
humans have fine control of the 27 degrees of freedom
each hand offers [3]. As such, hand gesture recognition
has become a prominent and exciting subfield of HCI.

1.2 Applications of Hand Gesture
Recognition.

To understand what is meant by a hand gesture in the
field of HCI, we now examine the existing applications
of hand gesture recognition (from [4]).

1.2.1 Virtual Reality

Hand gestures are used as a means to manipulate 3D
objects in software as if the objects were real (for ex-
ample, transforming complex molecules as a means

to better understand their properties [5]). Online, dy-
namic, 3D gestures are required in order to manipulate
the objects (eg. rotation, translation, and scaling).

1.2.2 Robotics and telepresence

Hand gestures are used to control remote objects
through a computerised intermediary (for example, a
surgeon is able to control a laparoscopic camera via a
computer using hand gestures to allow for fine control
[6]). The gestures often used are similar to those used
in virtual reality applications.

1.2.3 Desktop and tablet applications

Hand gestures are used to manipulate standard PC
applications without the use of a mouse (for example,
surgeons are able to directly control where to zoom
in on images taken during an endoscopy without the
need to operate a mouse or relay instructions via an as-
sistant [7]). All manner of gestures (online or offline,
dynamic or static, 2D or 3D) could find compelling
uses, depending on the specific application and task
at hand.

1.2.4 Gaming

Hand gestures are used to control in-game characters
or issue commands. The controller for the Nintendo
Wii contains a triaxial accelerometer, allowing for in-
game control of hand-held objects such as swords. The
Xbox Kinect contains a set of cameras that can track
hand motions in 3D, allowing for direct interaction

1



with the in-game environment. As with desktop ap-
plications, the type of gestures required depend on the
specifics of the game.

1.2.5 Sign language

Hand gestures (alongside arm and face gestures) repre-
sent a language that can be interpreted as commands
or translated to a written or spoken language. The use
of computers can, for example, help people learn sign
language by interpreting and verifying their actions
(for example, as part of a game [8]). The gestures are
complex, 3D and dynamic.

1.3 General User Requirements

For a gesture recognition system to be successful it
must be able to recognise enough gestures to suffi-
ciently serve a compelling purpose, however this func-
tionality will only be apparent if the system is ad-
equately usable [9]. This means it must be robust
enough to reliably recognise gestures regardless of the
complexity of the background and lighting conditions,
operate in real-time with a minimum of lag, and be
tolerant of user error [4]. The matching of gestures
with their functionality must also be obvious to allow
for easy learning and adoption of the system [10].

1.4 Existing Consumer Systems

Here is a summary of current hand gesture recognition
systems that use only a 2D camera.

1.4.1 Toshiba AirSwing

A commercial hand gesture recognition system to be
marketed to digital signage companies. Videos of it
in use suggest it can robustly process a predetermined
set of offline and online gestures. To augment the lack
of a mouse, the screen shows a translucent image of
the user so the user’s hand represents the cursor.

1.4.2 HandVu

An open source, OpenCV-based hand gesture recogni-
tion system that can recognise 6 predetermined static
offline gestures, but requires manual initialisation and
the hand tracking is often inaccurate.

1.4.3 FlutterApp

A commercial hand gesture recognition system which
recognises three predetermined static offline gestures
in order to control a variety of media applications. It
is responsive and performs well.

1.5 Motivation

With the rise of capacitive touchpads, multitouch ges-
tures are becoming more popular. There are a number
of software packages (eg. BetterTouchTool [11]) which
allow the user to map multitouch gestures to actions
like window management (eg. maximise the current
window), control media, or simulate keyboard button
presses. The benefit of such a system is that each user
can develop their own use cases and workflows. To
our knowledge, there is no such equivalent software
for hand gestures detected using a webcam.

This is likely due to the complexity of hand gesture
recognition. There are many elements to a gesture
recognition system (as described in the next section)
and often the best choice of elements is dependent on
the use case. There currently does not exist a frame-
work for evaluating and comparing different strategies
- even academics whom publish their ideas about new
strategies will only compare against a handful of oth-
ers in single-use scripts.

Our proposal is two-fold. First, we intend to de-
velop a gesture recognition framework that will allow
different strategies to be tested against each other. We
will record a variety of images of hand gestures in dif-
ferent circumstances (for example, with differing back-
ground complexities) so testing a strategy will reveal
its objective weaknesses and strengths. In order to
understand these, the framework will allow for debug-
like tools, such as being able to pause recognition and
inspect the state of the image at each point in the
strategy. This tool could be useful for academics to
easily test and optimise their new ideas.

Secondly, we intend to develop the BetterTouch-
Tool for hand gestures, on top of the framework. It
should be able to associate hand gestures with offline
actions such as simulating a keyboard button press,
and also with online actions such as changing the
speaker volume by raising or lowering the hand.

2 Relevant Work

We are interested in the specifics of the various imple-
mentations of hand gesture recognition. The general
workflow employed is data capture, feature extraction,
then gesture classification.

2.1 Data Capture

There are two categories of sensors which are to cap-
ture hand gestures: hand-mounted and vision-based
[4] which we now discuss.
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2.1.1 Hand-mounted sensors

Hand-mounted sensors (for example those found on
a “data glove” [12]) provide each digit’s joint orienta-
tions (either through mechanical or optical sensors) in
real-time. While accurate and reliable, these require
the user to wear bulky equipment which inhibits their
adoption for general use. They have proven useful
in learning sign languages [8], where the gestures are
complex enough for the glove’s reliability and accuracy
to be useful, and are used for long-enough periods of
time to make them worthwhile.

2.1.2 Vision-based sensors

This approach does not require the user to wear any
sensors, allowing for a more natural and convenient
input of data (although not entirely natural, since the
gestures must be made within the camera’s field of
view). Hands have proven to be notably difficult to
detect and interpret from visual data [13] because they
are homogenous in colour and texture, lack static fea-
tures (compared to a face, for example) and have many
degrees of freedom. Depth-sensing [14] or IR cameras
[15] can be used to separate the hand from other ob-
jects while providing extra data which can be used
to increase the fidelity of the features extracted. Such
cameras are still expensive and are not as widely avail-
able as 2D cameras.

2.2 Feature Extraction

If the input device is a data glove, the data it captures
(ie. joint orientations for all digits) can be immedi-
ately used as features. If instead a camera is used, the
data it captures requires substantial processing, typ-
ically involving hand detection, pose estimation and
hand tracking [16]. The correct method of feature ac-
quisition to use in a gesture recognition system is a
function of its desired application, the environment
in which it will be used, and the notion of what is
reasonable to ask of the user in terms of money and
preparation time.

2.2.1 Hand detection

Detecting a hand from a 2D camera presents a num-
ber of difficulties. The hand’s silhouette is compli-
cated and dynamic, and its colour is dependent on
the specific user’s skin colour and the lighting condi-
tions. A hand’s colour is relatively uniform through-
out gesturing (as opposed to its edges), so is a good
and computationally-cheap initial step in hand detec-
tion.

Skin colours and non-skin colours can be sepa-
rated using classifiers working in the hue-saturation-

intensity (HSI) colour-space [17] and variations in de-
tected colour due to lighting can be circumvented us-
ing colour-space statistics [18]. Face-detection (which
is easily done due to the face’s static shape) can be
used to track the subject’s skin colour more accurately
[19]. More advanced learning-based techniques also
exist, for example using a self-organising map to re-
duce the number of dimensions of an image’s colour
space as a means of classifying skin-coloured objects
[20].

Once the skin-coloured areas of an image have been
identified, one could simply mask the rest of the image.
However, this might introduce noise into the hand’s
subimage if there were abnormally dark shadows (ie.
a false negative) or it might find small skin-coloured
areas outside of the hand (ie. a false positive). An
alternative approach is to create a image where the in-
tensity of each pixel is the scaled probability of the cor-
responding pixel from the camera being skin-coloured,
then using an algorithm such as MSER [18] which at-
tempts to find large regions of interest (in this case,
large skin-coloured objects). Many algorithms exist
which find regions of interest, though MSER has been
shown to be one of the most effective [21].

Detecting skin colours will also pick up faces and
other body parts, so more discrimination is required
for such complex backgrounds. A workaround would
be to require the user to make a pre-determined hand
shape (eg. an open palm facing the camera) before
performing their gesture, which could be detected by
fitting a simplistic model of the hand’s shape to the
image [22]. Such a workaround adds inconvenience
to using a gesture recognition system, so should be
avoided if possible. Facial recognition can again be
used to avoid confusion with a hand, even when the
hand partially occludes the face [23]. Smith et al [24]
have proposed an interesting method that uses an ana-
logue from physics (force and energy fields) to detect
regions of complexity in an image such as a hand.

An alternative and popular [25, 26, 27, 28] method
decomposes the image (which can have a complex
background) into Haar-like features (which describe
local image-intensity distributions across the image)
before being passed to a set of weak classifiers that
have been trained on a large set of hand images, and
together form a strong classifier for detecting the pres-
ence of a hand. The AdaBoost algorithm [29], which
improves the performance of the classifier, is often
used. This approach has shown promise with small vo-
cabularies [26] but training large vocabularies is com-
putationally expensive [30]. The algorithm used to
generate Haar-like features [25] relies on using integral
images [31] which are scale invariant, so generating the
Haar-like features on different scales does not require
recalculating the integral images, making this a very
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efficient technique. Classifying the features is done in
a “cascade” [25] of weak classifiers, which allows for
easy parallelisation of the fail-fast classifiers, so very
little time is wasted processing parts of the image that
don’t contain a hand.

2.2.2 Pose estimation

After the hand has been detected, a feature set must
be extracted from it that will be used to recognise
the gesture being made. There are two approaches
[3], model-based and appearance-based, which we now
discuss in turn.

Using a 3D computerised model of a hand which
faithfully mimics the available ranges of motion (ie.
a kinematic model) a variety of poses and viewpoints
can be tried to find the 2D projection that matches the
image of the hand from the sensor [32]. Any number
of metrics can then be taken from the model hand and
used as features for gesture recognition. This provides
as much data as the data glove, but requires the edges
of the hand to be accurately recorded (which can be
difficult if the background does not contrast with the
hand, or the hand self-occludes) otherwise the comput-
erised model can lose much of its fidelity [4]. Another
issue is the complexity of finding the 3D model that
produces the measured silhouette (an example of in-
verse kinematics), which is a non-linear problem due
to the trigonometric functions required [30]. If subse-
quent images in the video show only small differences
in the hand’s pose, these functions can be approxi-
mated linearly, but otherwise can require non-trivial
amounts of computational time. The additional use of
depth-sensing cameras [13] lifts these restrictions and
improves the reliability of the metrics generated, al-
though depth-sensing cameras are still non-standard
and expensive compared to RGB cameras.

Alternatively, the appearance of the hand as the
camera sees it can be used without inferring knowl-
edge about the state of the hand. For example, Gupta
et al. [33] use the EigenTracking algorithm [34] to gen-
erate an eigenspace representation of the hand which is
invariant under affine transformation. This effectively
condenses a large sequence of a priori hand images
into a small set of images which represent hand-like
qualities, and form the basis vectors of the eigenspace.
The image to be tested is then decomposed into a lin-
ear sum of these basis vectors, resulting in the image’s
coordinates in the eigenspace which can then be used
as a feature set describing the hand shape (regardless
of how it is rotates or translates). However, the com-
pactness of the eigenspace (which is required for an
efficient description of the hand state) depends on the
gesture vocabulary being small. [30].

Another appearance-based approach is to generate

Haar-like features (as mentioned in section 2.2.1). In-
stead of detecting whether there is or is not a hand,
the features would be used to classify the hand pose,
thus requiring even more training than was required
for hand detection.

2.2.3 Hand tracking

The hand-detection algorithms that automatically ini-
tialise can be used in every frame to keep track of
the hand, but that would ignore the coupling between
image frames in a video. This would be good if the
framerate is too low for the speed at which the hand is
moving, but otherwise it ignores a wealth of data that
could be used to track the hand. By using a separate
hand tracking algorithm which uses this data, errors
in either algorithm can be smoothed out.

A popular object-tracking technique is the CON-
DENSATION algorithm [35] which is capable of track-
ing curves against complex backgrounds, as in [33],
and has been shown to be computationally efficient.
Another technique is the Camshift algorithm [36]
which has been shown to perform well with noise, dis-
tractors (eg. other hands), and partial occlusion [37].

2.3 Classification

Classification compares the features extracted from a
gesture against those from a vocabulary of gestures,
selecting the most similar. In this proposal we are only
concerned with classifying static gestures (ie. classify-
ing the hand pose in each frame separately).

The features on which to classify a hand might
describe concrete data about the hand, such as digit
joint angles or an image of the hand’s silhouette, or
they might describe more abstract data such as Haar-
like features of the image. The best features to use
will be invariant to translation, rotation, scaling, and
changes in lighting (or at least robust to such changes),
though a lack of invariance can be overcome by a more
complex classifier and a more diverse training set [27].

The correct classifier to use, and its morphology,
must be determined empirically by monitoring perfor-
mance and computational efficiency. The AdaBoosted
cascade of weak classifiers, as described in section
2.2.1, has shown to be a good classifier for high-
dimensional features [25]. Another popular classifier
[38, 39] is the support vector machine (SVM), which is
a statistical approach to segregating the feature space.
Others [40, 41] have used artificial neural networks,
which comprise highly-connected processing units in-
spired by neurones that are trained iteratively through
error-minimisation.
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3 Implementation

3.1 Key Goals

3.1.1 Implement a simplistic recognition
strategy

First, we will create a simple strategy to be able to
recognise static gestures against a white background.
The hand detector will mask anything close to white.
The pose estimator will fit a circle to the palm and use
edge detection outside of the circle to find fingertips,
then use the distance from the fingertips to the circle
as features. Since the hand is static, no hand tracking
will be required. Classification will be choosing the
vocabulary image with finger lengths that are closest
to the test image.

Each part of the gesture recognition strategy (ie.
hand detection and tracking, pose estimation and clas-
sification) will be represented by an element object,
and will belong to a strategy object that will perform
recognition by passing images between the elements
inside mediator objects. These images will be saved or
displayed to demonstrate the strategy’s performance.

3.1.2 Develop the framework’s test function-
ality

Next we will create a GUI that allows for strategies to
be created with customisable elements then executed,
with an image displayed after each element has fin-
ished (except for after classification, where the class’
name should be displayed). The strategies’ configura-
tions should then be able to be saved to disk.

We will then create a GUI to allow for sets of hand
images and videos to be taken from either a camera
or a file, and for each item to be tagged with a ges-
ture name and any other information (eg. how com-
plex the background is, whether the hand is rotated
or self-occluding). We can then populate the system
with a variety of gestures of differing complexity.

Once done, we will create another GUI that pops
up after a test has been run that displays general per-
formance as well as performances indexed by image
tag (eg. this strategy had a 30% success rate with im-
ages tagged “complex background”) and the amount of
CPU time used per frame.

3.1.3 Implement the hand detection and pose
estimation elements

We will implement the algorithms described in sec-
tion 2.2.1 and section 2.2.2. Most of them already
have open source implementations (in OpenCV) that
would only need wrapping. For now, hand tracking
will be done by the hand detection algorithms.

3.1.4 Improve the test framework

By this point, the elements are complex enough to
need configuration panels. Using something like the
“jfg” package, we will create a configuration form given
each element’s requirements that is displayed in the
test GUI when an element is clicked. The configura-
tions should be able to be saved to disk as part of each
strategy.

We will add more data to the mediator object, for
example the hand detector could store the height and
width of the bounding box containing the hand, which
can be displayed by hovering over the corresponding
output image.

3.1.5 Implement hand tracking algorithms

Both the CONDENSATION and camshift algorithms
are implemented in OpenCV, so we only need to wrap
them in the element class. In the image in the test
GUI that represents the output of the hand tracking
algorithm, we will show the output of the hand detec-
tion algorithm in another colour (for comparison with
the hand detection routines).

3.1.6 lmplement simple action configuration
GUI

We will create a GUI that allows a user to link hand
gestures to simulated keyboard button presses. Actu-
ally simulating the button presses is simple using the
“java.awt.Robot” package, and since there is no fur-
ther action required after the button is simulated this
represents a good first step.

The class that simulates the button press shall be
an “action handler”. It does not know anything about
the underlying framework except the mediator object,
which contains the gesture class and other information
that more advanced action handlers might find useful.

The GUI should allow for each action handler to
be configured, using the same technique as was used
in configuring the gesture recognition elements. The
keyboard button press simulator would need to know
which key combination to simulate, for example.

If a gesture is wrongly classified, the user should
be able to choose the correct class from a list and the
images that were wrongly recognised should be added
to the training set for the correct class.

3.2 Aspirational Goals

3.2.1 Allow the user to record static gestures

This would use the same GUI as used in section 3.1.2
to take images from the camera of the gesture from
slightly different angles (to form a valid training set),
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then retrain the classifiers. If the classifier doesn’t per-
form well, the gesture was probably too similar to a
previously defined gesture, which the user should be
told.

3.2.2 Allow for dynamic strategies

We will create strategy elements that dynamically del-
egate to other elements based on previous mediator
objects. For example if the background is complex
(which could be calculated every few minutes) then
choose a hand detector that can cope with it. The
rules for changing element would be hard-coded into
the delegator elements, but could be modified using
the configuration forms described in section 3.1.4.

3.2.3 Implement a cross-platform window re-
sizing and moving package

We will create a package to close and minimise win-
dows, and resize them to the left or right half, the
top or bottom half, or to any of the quadrants of the
screen.

On Mac, windows can be managed via Apple-
Script, which can be executed from within java us-
ing the “javax.script” package. On Windows there are
“win32” handles to manage windows, which can be ac-
cessed using the “JNA” java package. On Linux, win-
dows can be controlled from the shell utility “wmctrl”,
which can be called using the “Runtime” java class.
The action handler to use this package would choose
which method to use at runtime based on the OS. Its
configuration panel could be a drop-down menu of the
aforementioned functions.

3.2.4 Implement simple non-static gestures

These are gesture where the hand pose determines the
class (and thus the action to take) and subsequent
translation and rotation is passed to the action han-
dler for it to decide what to do. The action handler
would receive mediator objects for every frame after
the pose was detected (which will contain hand trans-
lation and rotation since the last frame). When the
mediator object reports that the hand has changed its
class, the action handler can decide to release control
back to the framework to choose a new action handler.

For example, an action handler could manipulate
the speaker volume by tracking the hand’s height in
the image. Java can manipulate speaker volume us-
ing the “javax.sound.sampled.AudioSystem” package.
The action handler’s configuration panel would con-
trol the sensitivity and direction of hand motion to
use.

3.2.5 Implement dynamic gestures

By dynamic, we mean gestures which includes mul-
tiple hand poses. This would be handled by the ac-
tion handler when it is given a mediator object that
shows the hand’s pose class has changed. Instead of
immediately returning control back to the framework
however, it can choose a new action.

For example while changing the volume the user
might extend a finger, which the volume changing ac-
tion handler could interpret as a desire to mute the
speakers.

3.3 Expectations
We expect to complete at least up to section 3.1.5 by
which point we will have implemented a useful test
framework for hand recognition. If the recognition is
not accurate (eg. static gestures in front of complex
backgrounds are correctly classified less than 80% of
the time) then there would be little point in creating
the action handlers. Instead we would continue to im-
prove the test framework by completing section 3.2.2,
and investigate optimising the implemented methods
or try other methods available in OpenCV, or look at
recent articles and implement promising algorithms.
Otherwise we hope to implement as many of the op-
tional goals as time allows.
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